An efficient calcium phosphate nanoparticle-based nonviral vector for gene delivery

نویسندگان

  • Yachun Liu
  • Tao Wang
  • Fangli He
  • Qian Liu
  • Dexi Zhang
  • Shuanglin Xiang
  • Shengpei Su
  • Jian Zhang
چکیده

BACKGROUND Smaller nanoparticles facilitate the delivery of DNA into cells through endocytosis and improve transfection efficiency. The aim of this study was to determine whether protamine sulfate-coated calcium phosphate (PS-CaP) could stabilize particle size and enhance transfection efficiency. METHODS pEGFP-C1 green fluorescence protein was employed as an indicator of transfection efficiency. Atomic force microscopy was used to evaluate the morphology and the size of the particles, and an MTT assay was introduced to detect cell viability and inhibition. The classical calcium phosphate method was used as the control. RESULTS Atomic force microscopy images showed that the PS-CaP were much smaller than classical calcium phosphate particles. In 293 FT, HEK 293, and NIH 3T3 cells, the transfection efficiency of PS-CaP was higher than for the classical calcium phosphate particles. The difference in efficiencies implies that the smaller nanoparticles may promote the delivery of DNA into cells through endocytosis and could improve transfection efficiency. In addition, PS-CaP could be used to transfect HEK 293 cells after one week of storage at 4°C with a lesser extent of efficiency loss compared with classical calcium phosphate, indicating that protamine sulfate may increase the stability of calcium phosphate nanoparticles. The cell viability inhibition assay indicated that both nanoparticles show similar low cell toxicity. CONCLUSION PS-CaP can be used as a better nonviral transfection vector compared with classical calcium phosphate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

انتقال ژن به سلول‌های بنیادی مزانشیمال موشی: بررسی مقایسه‌ای دو روش ویروسی و غیر ویروسی

    Background and Aims : Mesenchymal stem cells (MSCs) are attractive targets for cell and gene therapy, because they can differentiate into many cell lineages. Hence, finding an efficient and suitable method for transferring of genetic materials to these cells is very essential. In this study, we evaluated the efficiency of two methods of gene transferring, viral and nonviral, in transfection...

متن کامل

Amorphous magnesium phosphate nanoparticles as nonviral DNA carriers

Maryam Nabiyouni, Sarit B Bhaduri. University of Toledo, Toledo, OH 43606 Statement of Purpose: Nonviral gene delivery has gained much attention due to its potential in addressing the viral gene delivery limitations like unintentional mutagenesis. Different natural and synthetic materials such as polymers, lipids, and calcium phosphate particles have been developed as DNA carriers. However, the...

متن کامل

Encapsulation of plasmid DNA in calcium phosphate nanoparticles: stem cell uptake and gene transfer efficiency

BACKGROUND The purpose of this study was to develop calcium phosphate nanocomposite particles encapsulating plasmid DNA (CP-pDNA) nanoparticles as a nonviral vector for gene delivery. METHODS CP-pDNA nanoparticles employing plasmid transforming growth factor beta 1 (TGF-β1) were prepared and characterized. The transfection efficiency and cell viability of the CP-pDNA nanoparticles were evalua...

متن کامل

Calcium based non-viral gene delivery: an overview of methodology and applications.

Application of therapeutic gene transfer in the treatment of genetic diseases is a notable progress but there are some disadvantages and limitations in it. The process of overcoming these barriers is a drastic change in gene delivery. Recently, calcium phosphate nanoparticles alone, or in combination with viral and nonviral vectors, were found to have a positive effect on gene transfer especial...

متن کامل

Cationic lipid-nanoceria hybrids, a novel nonviral vector-mediated gene delivery into mammalian cells: investigation of the cellular uptake mechanism

Gene therapy is a promising technique for the treatment of various diseases. The development of minimally toxic and highly efficient non-viral gene delivery vectors is the most challenging undertaking in the field of gene therapy. Here, we developed dimethyldioctadecylammonium bromide (DODAB)-nanoceria (CeO2) hybrids as a new class of non-viral gene delivery vectors. These DODAB-modified CeO2 n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011